
249

Stronger CDA Strategies through Empirical
Game-Theoretic Analysis and Reinforcement Learning

L. Julian Schvartzman and Michael P. Wellman

University of Michigan, Artificial Intelligence Laboratory
Ann Arbor, MI 48109-2121 USA

{lschvart,wellman}@umich.edu

ABSTRACT
We present a general methodology to automate the search for equi-
librium strategies in games derived from computational experimen-
tation. Our approach interleaves empirical game-theoretic anal-
ysis with reinforcement learning. We apply this methodology to
the classic Continuous Double Auction game, conducting the most
comprehensive CDA strategic study published to date. Empirical
game analysis confirms prior findings about the relative perfor-
mance of known strategies. Reinforcement learning derives new
bidding strategies from the empirical equilibrium environment. It-
erative application of this approach yields strategies stronger than
any other published CDA bidding policy, culminating in a new
Nash equilibrium supported exclusively by our learned strategies.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial Intel-
ligence]: Multiagent systems; J.4 [Social and Behavioral Sci-
ences]: Economics

General Terms
Economics, Experimentation

Keywords
Continuous double auction, empirical game-theoretic analysis, trad-
ing agents

1. INTRODUCTION
The continuous double auction (CDA) [6] is a dynamic market

environment, where bidders repeatedly exchange offers to buy and
sell units of a good, in order to maximize trade surplus. Bidding
in CDAs is a challenging strategic problem, addressed by much
prior agent-based research. The popularity of CDAs as a research
domain can be attributed in large part to real-world salience: tril-
lions of dollars’ worth of financial securities and commodities con-
tracts are traded through versions of CDAs annually. Researchers
are also drawn to the challenge of strategic reasoning in a dynamic
and uncertain environment. The complexity of this domain (huge
strategy space, many agents, severely incomplete and incremen-
tally revealed information) has generally precluded analytic solu-
Cite as: Stronger CDA Strategies through Empirical Game-Theoretic
Analysis and Reinforcement Learning, L. Julian Schvartzman and Michael
P. Wellman, Proc. of 8th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tion. Hence, agent-based simulation experiments have provided the
primary source of evidence for comparing strategy ideas to date.

A particular difficulty in experimental analysis of strategic do-
mains is that the efficacy of an agent’s strategy can be highly de-
pendent on strategy choices of other agents. Previous CDA studies
have dealt with this issue in a variety of ways, including fixed dis-
tributions of strategies (e.g., uniform), factorial designs, and round-
robin tournaments. In the absence of dominant strategies, such
treatments offer useful evidence but strain to support definitive con-
clusions. Comparisons based on evolutionary stability analysis [1,
4, 17, 30] provide additional confidence due to the pressures ex-
erted on the agent population by the selection dynamic.

In the empirical game-theoretic analysis (EGTA) approach, sim-
ulation experiments provide a statistical basis for estimating an
approximate game, and standard game-theoretic concepts are em-
ployed to evaluate strategy profiles. EGTA methods accumulate
knowledge about strategy performance across the range of other-
agent contexts through directed Monte Carlo sampling. By sys-
tematically adding strategy candidates to the mix, we can produce a
comprehensive model of a broad strategy space, amenable to game-
theoretic analysis. Previous applications of EGTA to market en-
vironments yielded insights about strategies developed for trading
agent competitions and simultaneous auctions [11, 35].

In the work reported here, we undertook a systematic EGTA
analysis of the explored CDA strategy space, and extended the
methodology to automatically generate new strategy candidates us-
ing reinforcement learning (RL). Our analysis of prior strategies
constitutes the most comprehensive CDA experiment to date, and
confirms the superiority of GD and extended GD strategies (see
Section 3.4) compared to previous proposals. By interleaving EGTA
with RL, we further show how to improve over previously identi-
fied strategies, by deriving new bidding policies that outperform
all of these in equilibrium. Iterating this approach, we converge
on a new mixed strategy that may now be considered the “reign-
ing champion” for this instance of the CDA domain. Although
these RL-derived strategies are somewhat opaque, regression anal-
ysis sheds some light on the features that distinguish their behavior.

As important as the new strategies themselves is the general
method for deriving them for a particular CDA environment. The
interleaved EGTA/RL approach provides a framework for generat-
ing improved strategies for other CDA configurations, as well as a
wide range of other challenging strategic domains.

2. CONTINUOUS DOUBLE AUCTION
The CDA is one of the most ubiquitous auction types, underpin-

ning most financial and commodity exchanges. Double means that
both buyers and sellers bid, and continuous means that bid matches
are cleared as soon as they occur. Upon receiving a new sell (buy)

Cite as: Stronger CDA Strategies through Empirical Game-Theoretic
Analysis and Reinforcement Learning, L. Julian Schvartzman, Michael
P. Wellman, Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. 249–256
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

250

bid, the auction checks whether it matches the best outstanding buy
(sell) bid. If so, the respective bidders trade at a price usually de-
termined by the earlier bid, and a new price quote is issued. The
typical price quote consists of a BID-ASK pair, where BID is the
highest outstanding purchase price (the price at which one could
sell at least one unit), and ASK is the lowest outstanding sell price.

Standard CDAs allow bidding for multiple units of a good, and
these units are commonly treated as divisible quantities. As a re-
sult, bids effectively express willingness to trade any fraction of
the specified quantity, at the given price. Unmatched or partially
matched bids are listed in the order book, and typically remain out-
standing until they are matched, replaced, withdrawn, or canceled
when the auction closes. Variations of this general scheme are plen-
tiful, with different bidding, clearing, and quoting rules.

3. EXISTING STRATEGIES
Double auctions have been the subject of extensive experimental

investigation. The first effort to compare a range of automated bid-
ding strategies was the 1990 Santa Fe Double Auction Tournament
(SFDAT) [6]. Here we provide brief descriptions of the major CDA
strategies proposed in the literature to date, with references to the
original publications for further details.

3.1 Kaplan
The winner of SFDAT was a sniping strategy submitted by Todd

Kaplan [22]. The basic idea of Kaplan is to keep quiet for most
of the auction, then attempt to “steal the deal” in the last opportu-
nity if it is expected to produce some gain. By remaining inactive
while other bidders conduct price discovery, the agent avoids re-
vealing any private information. Despite its surprising success at
SFDAT, subsequent studies found strong incentives to deviate to
other strategies from an all-Kaplan population [33, 28]. Our imple-
mentation of Kaplan follows that of Tesauro and Das [28].

3.2 Zero Intelligence
Zero intelligence (ZI) agents were proposed by Gode and Sun-

der [9], primarily as an attempt to demonstrate that convergence
to equilibrium prices was due to the structure of the CDA and in-
dependent of the traders’ motivation, intelligence, or learning. ZI
agents simply generate bids at random prices drawn from a uni-
form distribution. Despite the simplicity of the strategy, Gode and
Sunder showed that a market consisting of ZI traders achieved high
allocation efficiency and quickly converged to equilibrium prices.

We employ a flavor of the strategy called ZI-c (ZI with con-
straint), restricting the range of prices to those that would not gen-
erate a loss. We also consider a variant that we call ZIbtq, which
further constrains prices to those that would beat the current price
quote.

3.3 Zero Intelligence Plus
Observing that markets slightly more complex than the model

of Gode and Sunder resulted in inefficient outcomes for ZI agents,
Cliff [3] proposed zero intelligence “plus” (ZIP) agents to remedy
the problem. The ZIP strategy uses an elementary form of machine
learning, adjusting profit margins based on market conditions. Sell-
ers raise their expected margins when trade prices are above the
seller’s current offer, and decrease them if trade or ASK prices are
below it. Buyers employ an analogous criterion.

Since the original paper, ZIP has been widely tested and in some
cases improved. One such improvement was proposed by Tesauro
and Das [28], who used an array of profit margins (one per traded
unit) instead of a single value. Another modification was suggested
by Preist [18], who used a simpler update rule. Finally, Cliff [4]

also described “ZIP60”, a parameterized version of the original ZIP
agent that included 60 parameters tuned with a genetic algorithm.
Our implementation of ZIP follows that of Tesauro and Das.

3.4 Gjerstad and Dickhaut
A particularly successful bidding strategy, now generally called

GD, was proposed by Gjerstad and Dickhaut [8]. Based on histori-
cal data from the auction, GD maintains a belief function represent-
ing the probability of a bid being accepted depending on its price.
For a seller, the belief function is given by

Pr(p) =
T S(p)+B(p)

T S(p)+B(p)+US(p)
, (1)

where T S(p) is the total number of transacted sell bids at a price
p or higher, B(p) is the total number of buy bids submitted to the
auction at a price p or higher, and US(p) is the total number of
unmatched sell bids up to p. These values are calculated by taking
into account the history of bids (submitted by all agents) leading to
the last M transactions, and extended to the positive reals using cu-
bic spline interpolation. The agent bids at a price p that maximizes
expected surplus, defined as argmaxp Pr(p)(p−v), given a seller
cost (or buyer value) of v. Buyers utilize a symmetric heuristic.

The original GD was further improved (e.g., MGD by Tesauro
and Das [28]) and tested by several authors, who confirmed GD to
be relatively strong. In particular, Walsh et al. [33] conducted an
empirical game-theoretic analysis including ZIP, GD, and Kaplan
and found that GD would become nearly dominant with only a 5%
improvement. Our implementation mimics MGD, using M = 7.

3.5 GDX
GD attempts to optimize surplus, but in a myopic fashion, con-

sidering only the next immediate trade. To address this limitation,
Tesauro and Bredin [27] proposed an online dynamic programming
(DP) bidding approach for the CDA, dubbed GDX. This strat-
egy represents a state by the agent’s pending trades and remaining
bidding opportunities, and estimates transition probabilities using
Gjerstad and Dickhaut’s belief function. The approach maximizes
discounted cumulative future rewards rather than just immediate
profits. GDX weights rewards using a discount parameter γ , and
the authors note that as γ → 0 GDX reproduces the GD strategy,
whereas with γ → 1 GDX deviates the most from GD.

In order to determine a new bidding price, GDX recalculates its
DP recursion on every bidding iteration. The authors found ex-
perimentally that high values of γ create a strong GDX trader that
clearly outperforms GD in a wide variety of market scenarios. Our
implementation uses γ = 0.9.

3.6 Risk-Based and Adaptive-Aggressiveness
Vytelingum et al. [32] proposed a “risk-based” (RB) strategy

that, much like ZIP (but using a more sophisticated method), grad-
ually adjusts expected margins based on market activity. In em-
pirical studies with homogeneous and balanced populations of two
strategies, the authors found that RB outperformed ZI and ZIP.

The strategy determines a risk factor r to classify agents as: (a) try-
ing to get high profits with a low probability of succeeding (0 < r≤
1); (b) seeking lower profits with a higher probability of trading
(−1 ≤ r < 0); or (c) neutral (r = 0). RB uses an arbitrary func-
tion to calculate a target price τ(p∗,r), where p∗ is a moving av-
erage of historic trade prices. The value of τ is also determined
by θ ∈ [−1,∞), a fixed parameter that specifies the rate of change
in τ with respect to r. Seller agents use a simple learning rule to
increase r (which results in a larger τ) when trade occurs at a price
p≥ τ , and decrease it when trading at p < τ or submitting sell bids

L. Julian Schvartzman, Michael P. Wellman • Stronger CDA Strategies through Empirical Game-Theoretic Analysis and Reinforcement Learning

251

at p ≤ τ . Buyers utilize a symmetric approach. On each bidding
iteration, the actual bidding price is moved towards τ by a fixed
factor. Our implementation sets θ = 1, which the authors found
performed best in heterogeneous populations.

Further improvement of RB produced a new strategy called “adap-
tive aggressiveness” (AA) [31]. AA uses a learning rule to adapt θ
to market conditions, increasing (decreasing) the rate of change of
τ given higher (lower) price volatility. The authors evaluated this
strategy experimentally, and found that it outperformed ZIP and
GDX in both static and dynamic environments.

3.7 Other Strategies and Related Work
The Penn-Lehman Automated Trading (PLAT) Project [12] em-

ploys a market simulator that merges bids from automated trading
agents with limit order data from real-world financial exchanges.
This project inspired several bidding strategies, including three ap-
proaches explored by Sherstov and Stone [23]. One was based on a
very simple RL formulation. A second “trend-following” strategy
predicted prices based on a linear regression, placing purchase bids
for positive regression slopes and sell bids for negative ones, clos-
ing the position when the trend reversed. The third strategy, dubbed
“market-making”, also used linear regression to predict trends and
place bids, closing positions as soon as a small profit was achieved.

Park et al. [16] propose a bidding heuristic based on a Markov
chain model of the auction process, computing state transition prob-
abilities and payoffs for discrete bid prices and picking the one pro-
viding the highest benefit. Their approach is similar in spirit to our
learning scheme, except that we explore a larger state space with
no obvious way to model transitions explicitly. He et al. [10] em-
ploy fuzzy logic to develop a heuristic strategy for the CDA, using
fuzzy rules and reasoning mechanisms in order to find the “best”
bid given a market state.

Other researchers employ simulations with automated strategies
with the purpose of evaluating global market properties. Farmer et
al. [5], for example, analyze the predictive power of a model con-
sisting of ZI agents, using data from the London Stock Exchange.
Agent models from the finance literature are also relevant to this re-
search. LeBaron [14] surveys agent-based models used in finance,
some of which include settings of autonomous agents that learn
thorough genetic algorithms.

The Trading Agent Competition, an international forum devoted
to trading research, organized a yearly tournament of a game called
TAC Travel between 2000 and 2006 [34]. Over time, tournament
participants explored different trading approaches for CDAs (among
other auctions included in the game), ranging from ad hoc hard-
coded strategies [7, 29] to machine learning methods [2, 24].

4. EXPERIMENTAL SETUP

4.1 CDA Game
The CDA game investigated in this research was inspired by

many previous works, including those surveyed in Table 1. Our
experimental setup was designed to calibrate as closely as possible
with prior studies (not completely possible given their heterogene-
ity), and is especially similar to that of Walsh et al. [33].

We consider a CDA game of 16 agents with fixed roles, half of
them buyers and half of them sellers of up to 10 units of a commod-
ity. Buyers are provided with unlimited access to cash, and sellers
are endowed 10 units of the commodity. The type of an agent is
defined by a list v1, . . . ,v10, where vi is the value obtained by a
buyer (or cost of a seller) trading the ith unit, assuming that buyers
(sellers) trade units by decreasing (increasing) value.

Papers Strategies Profilesa

Tesauro and Bredin [27] ZIP, GD, GDX D, B
Tesauro and Das [28] Kaplan, ZI, ZIP, GD, MGD H, D, B
Vytelingum et al. [30] Parameterized GDs A
Vytelingum et al. [32] ZI, ZIP, RB H, B
Walsh et al. [33] Kaplan, ZIP, GD A

Table 1: Some studies on automated CDA bidding strategies.
aA: all profiles; B: balanced group of two strategies; D: one agent deviating
from homogeneous population; H: homogeneous population.

Values vi are independent random integers drawn from a uni-
form distribution between vmin = 61 and vmax = 260, sorted after-
wards for trading purposes. By design, all strategies avoid trading
at a loss, and thus prices in the game are restricted to the range
[vmin,vmax]. The payoff received by a buyer trading x units at prices
pi is ∑x

i=1 vi− pi, and for a seller in that circumstance ∑x
i=1 pi−vi.

Agents trade units sequentially, one at a time, through a single-
unit CDA. The auction remains open for a trading period of 180
seconds, and agents revise bids asynchronously and continually,
with a one-second sleep time between bidding iterations. The clear-
ing price is determined by the earlier of the matched bids. Un-
matched bids are kept in the order book until replaced, or until the
end of the trading period. Some authors [3, 28] have imposed an
additional rule known in the literature as the “NYSE convention”,
requiring new bids to beat the current price quote in order to speed-
up convergence towards trading prices. We do not enforce any such
bid improvement rule.

Given that some strategies adapt online over time, conditioning
the agent behavior on experience from previous history, each trad-
ing period is replayed five times with identical roles, unit valua-
tions, and initial holdings (i.e., no trades). The mean payoff of these
five periods constitutes a single game instance (or experiment).
Note that the agents we evaluate differ significantly in the extent
to which they retain information across trading periods. Specif-
ically, Kaplan remembers extreme trade prices from the previous
period, ZIP maintains margins for each unit (initializes new mar-
gins randomly to request at least what they had requested in the
previous period), and GD and GDX maintain the extreme prices
and the state underlying their belief function. The remaining strate-
gies (ZI, ZIbtq, RB, AA, and all of our learned strategies) treat each
trading period independently.

4.2 Reductions
Given the prohibitive computational expense of exhaustive anal-

ysis, we employ several techniques for reducing the number of sim-
ulations required.

Exploiting Symmetry.
In a symmetric game, all agents have the same strategy set, and

the payoff for a strategy depends on the strategies employed by
the others, but not on who is playing which.1 By exploiting game
symmetry we decrease the number of distinct strategy profiles from
Sn to

(n+S−1
n

)
, given n players and S strategies. For n = 16 and S =

14 (the size of our ultimate CDA experiment), symmetry reduces
the profile space from over 1018 to about 68 million.

Hierarchical Reduction of Players.
Hierarchical reduction [36] restricts the number of agents play-

ing any strategy to a multiple of some fixed integer, coarsening the
profile space by reducing the degrees of strategic freedom. Assum-
1The CDA game distinguishes buyer and seller roles, but since the
behaviors and payoffs are mirrored we can still treat as symmetric.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

252

ing that payoffs are not too sensitive to unilateral strategy devia-
tions and vary smoothly with the quantity of agents playing them,
a reduced game can serve as a good approximation of its underly-
ing full game. We employ this reduction to transform the original
16-player into a 4-player CDA game, denoted by CDA↓4. For 14
strategies, the combined effect of symmetry and hierarchical reduc-
tion shrinks the space to 2380 profiles.

Variance Reduction.
The method of control variates [21] is a standard technique to

reduce variance in Monte Carlo simulation. The idea is to exploit
the correlation between agent type and payoff, adjusting payoffs
based on some measure of “luck”. Given an agent type, the method
calculates the expected payoff and subtracts it from sampled pay-
off, reducing variance while preserving the mean. To apply con-
trol variates, we estimate expected payoff by using a linear regres-
sion fitting sampled payoffs of a buyer as a function of normal-
ized unit valuations, vi−vmin (for sellers, the normalized valuations
are vmax− vi). The dataset used to calculate coefficients included
25,000 games picked randomly from profiles of strategies 1 to 6
(see Table 3), each game involving 80 points (one per agent and
trading period). All results reported here are based on this adjust-
ment, which resulted in a variance reduction of 62%.

4.3 Implementation
We implemented a CDA game simulator using AB3D, a config-

urable market game server [15]. Our distributed setup simulated
many games in parallel, using almost 200 Linux machines at the
University of Michigan. Each game runs on two separate machines,
one controlling the game and operating the auction, and another
running all 16 agents, each a separate process. Our learning infras-
tructure (Section 6) was also distributed, comprising on average 30
clients running the online learning algorithm and updating a cen-
tralized database in parallel.

5. METHODOLOGY
The basic approach to EGTA involves writing a game simula-

tor, generating candidate strategies, estimating an empirical payoff
matrix, and analyzing it using standard tools from game theory. In
order to generate candidate strategies, researchers often construct a
baseline policy informed by their domain knowledge, and explore
a strategy space defined by parametric variations on the baseline.
The key extension we introduce is to generate candidate strategies
for our CDA game automatically, through reinforcement learning.
We employ Q-learning, a classic model-free RL approach, which
is appropriate given our limited basis for modeling the dynamic
behavior of the CDA environment.

Our methodology consists of the following broad steps:

1. Implement a game simulator that returns payoffs as a function
of agent strategies, randomly chosen agent types, and other
sources of randomness intrinsic to the game. (Section 4)

2. Implement a set of candidate strategies S. (Section 3)
3. Estimate the empirical game via Monte Carlo sampling, by

running the simulator repeatedly. (Section 7.2)
4. Find a Nash equilibrium s∗. (Section 7.2)
5. Derive a new bidding strategy L using RL, applied in a context

where other agents play s∗. (Sections 6 and 7.1)
6. If L provides a positive deviation from s∗, add L to S, and

extend the empirical game by continuing with step 3. Other-
wise, if learning has converged and the RL model cannot be
improved further, the process ends.

Market

Problem
Randomness

Bidding

Strategies
Simulator

Empirical

Payoff Matrix

Nash

Equilibria

New RL

Strategy
Deviates?

Can

Improve RL

Model?
End

Online

Learning

In Out

Yes

No Yes

No

Figure 1: Interleaving EGTA and RL.

Steps 1 through 4 are part of the standard EGTA process [20].
Our extension adds steps 5 and 6, and repeats the cycle until con-
vergence. The entire process is summarized in Figure 1.

The central idea in our interleaved approach is to focus learning
effort on the contexts (i.e., configuration of other-agent strategies)
supported by equilibrium reasoning over the data collected thus far.
Given the large amount of training data required for effective RL
in this domain, it would not be practical to learn a best response to
any but a tiny fraction of other-agent strategy profiles. By focus-
ing on finding a deviation from s∗, we concentrate the training on
the most promising regions of profile space. By definition, a new
strategy that succeeds at deviating from s∗ will qualitatively change
the empirical game analysis, effectively producing a new equilib-
rium. By introduction of relevant strategies at successive EGTA-
RL iterations, we increase our confidence in the ultimate results of
analyzing the cumulative empirical game.

Throughout this work we utilize the standard notion of approxi-
mate equilibrium, measured by the regret value ε . A strategy pro-
file s constitutes an ε-equilibrium if no player could expect to gain
more than ε by deviating unilaterally from its strategy in s to any
feasible strategy [19]. The regret of a Nash equilibrium (NE) is
zero. There are numerous methods to compute Nash equilibrium
given a payoff matrix. Our choice is to employ replicator dynam-
ics [26], an evolutionary method that iteratively updates the pro-
portions of a population of pure strategies. When the process con-
verges, the result of replicator dynamics is a symmetric equilibrium
(in general, a mixed strategy with probabilities defined by the pro-
portions).

6. LEARNING FRAMEWORK

6.1 Reinforcement Learning Model
Reinforcement learning [25] is a machine learning technique that

aims to discover a policy that maximizes reward over time. In con-
trast to supervised learning, in which an agent is taught by exam-
ple, RL requires discovering what actions produce the best results
by trying them. In order to derive bidding strategies for the CDA,
we employ a variety of RL called Q-learning, and define our model
by a standard formulation of states, actions, and rewards.

State Space.
We consider the following candidate features to describe a state.

These features define the observable variables eligible for condi-
tioning actions.
H1 Normalized moving average p̄ of recent trade prices from all

agents. For buyers, H1 = p̄−vmin; for sellers, H1 = vmax− p̄.
H2 Probability weighted ratio of recent trade prices from all agents

L. Julian Schvartzman, Michael P. Wellman • Stronger CDA Strategies through Empirical Game-Theoretic Analysis and Reinforcement Learning

253

above and below a threshold d. For a seller,

H2 =

∫ vmax
d [1−F(p)]d p
∫ d

vmin
F(p)d p

,

where F(p) is the cumulative distribution of recent trade prices,
and d is the value of the next unit to be traded. Buyers use a
symmetric formula. This feature is similar to the Omega mea-
sure used in finance [13].

H3 Same as H2, but using the bid price as a threshold. This fea-
ture is actually a hybrid between a state and an action. It is
related to the belief function used by GD, as it embeds in a
state representation an implicit likelihood of trading, based on
recent price history.

Q1 Best outstanding bid by agents of the opposite role. For buy-
ers, Q1 = ASK−vmin; for sellers, Q1 = vmax−BID.

Q2 Best outstanding bid by agents of the same role. For buyers,
Q2 = BID−vmin; for sellers, Q2 = vmax−ASK.

T1 Total time elapsed this trading period.
T2 Time since the last trade.
U Number of units left to trade.
V Normalized value vi of the next unit to be traded. For buyers,

V = vi−vmin; for sellers, V = vmax−vi.

Actions.
An action A is defined as a positive offset from the value of the

next unit to be traded, which determines the bidding price.

Rewards.
Agents receive as immediate reward the surplus for each com-

pleted trade, that is, the difference between unit valuation and trad-
ing price. Terminal rewards are not needed in our CDA game.

6.2 Function Approximation with Tile-Coding
A Q function can be represented in tabular or implicit form.

Many RL applications (like our CDA scenario) involve continu-
ous features and high dimensionality, requiring function approxi-
mation. Several successful function approximators exist. Here we
use a (mostly) standard implementation of tile-coding [25], a com-
putationally efficient method that provides local generalization.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/6 1/3 1/2 1/3 1/6

1/3 2/3 1 2/3 1/3

1/6 1/3 1/2 1/3 1/6

Feature A

Fe
at

ur
e

B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2
1/4 1/2 3/4 1/2 1/4

1/3 2/3 1 2/3 1/3

1/4 1/2 3/4 1/2 1/4

1/6 1/3 2/4 1/3 1/6

1/12 1/6 1/4 1/6 1/12

Feature A

Fe
at

ur
e

C

Figure 2: Update proportions for two tilings encoding features
(A, B, C) = (.33, .48, .91), given bA = 2, bB = 1, and bC = 3.

We partition state and action features into tiles, and combine
them into one or many multidimensional tilings. The method main-
tains a weight on each tile, and the approximate Q-value of a state-
action pair is represented by the sum of the weights of the tiles, one
per tiling, in which it is contained. To generalize across multiple
dimensions (features), we define a parameter bi to denote general-
ization breadth, the farthest neighbor tile across dimension i that
gets updated. Given a training tuple, the method finds the con-
taining tile t (in each tiling), calculates the standard Q-learning up-
date, and adjusts the weight on t accordingly. Neighbors that are

di (di ≤ bi) tiles away from t across dimension i get a fraction of
such update equal to ∏F

i=1(1−
di

bi+1), assuming F features encoded
in the tiling. An example is provided in Figure 2. Note that mul-
tidimensional updates grow exponentially in the number of dimen-
sions, but are manageable in practice given small bis and relatively
few dimensions per tiling.

7. EXPERIMENTS

7.1 Learned Strategies
Even our small set of candidate features induces too many possi-

ble tiling arrangements to test them all.2 We tried combinations of
features based on our experience and some experimentation, over
14 learning iterations described in Table 2.

Strategy State Action

L1 Q(1,10)
1 Q(1,10)

2 T (1,8)
1 U(0,10) V (1,10) A(2,10)

L2 Q(1,10)
1 Q(1,10)

2 T (1,8)
1 U(0,10) V (1,10) A(2,10)

L3 Q(1,16)
1 Q(1,16)

2 T (1,8)
1 U(0,10) V (1,16) A(0,16)

L4 Q(1,16)
1 T (1,8)

1 U(0,10) V (1,16) A(0,16)

Q(1,16)
2 T (1,8)

1 U(0,10) V (1,16) A(0,16)

L5 Q(1,16)
1 T (1,8)

2 U(0,10) V (1,16) A(0,16)

L6 Q(1,16)
1 T (1,8)

2 U(0,10) V (1,16) A(0,16)

Q(1,16)
2 T (1,8)

2 U(0,10) V (1,16) A(0,16)

L7 H(1,16)
1 Q(1,10)

1 T (1,8)
2 U(0,10) V (1,8) A(0,16)

L8 H(1,16)
2 Q(1,10)

1 T (1,8)
2 U(0,10) V (1,8) A(0,16)

L9-L14 H(1,16)
3 Q(1,10)

1 T (1,8)
2 U(0,10) V (1,8) A(0,16)

Table 2: Features encoded into strategies L1–L14. Feature i
is denoted by i(bi,ri), for generalization breadth bi and ri tile
partitions. Strategies on multiple rows denote multiple tilings.

Strategy L1 was learned offline in two successive learning iter-
ations, each using a different training set. The first iteration used
games in which all agents played ZI. The second used games with
4 learning agents (derived from the first iteration) attempting to de-
viate from an all-ZI population. We always use a 4-agent deviation,
equivalent to one player in our reduction to CDA↓4.

All subsequent strategies, L2 to L14, were derived using on-
line Q-learning. A training set consisted of games in which 12
agents played according to an equilibrium mix, and four learn-
ing agents attempted to deviate. Consequently, the proportion of
training games in each profile was consistent with that mix. Train-
ing was conducted by repeatedly cycling over the experience col-
lected by all 16 agents during the last 250 games played, out of
7000 games. Each training tuple was used 1407 times, on average.
During the first 3000 games, learning agents explored new actions
with a 15% probability, using softmax action selection. Thereafter,
learning agents always picked the best action for 4000 additional
games. In all cases, the learning rate was fixed at .01, and the dis-
count factor at .99. The payoff of a learned strategy was evaluated
by playing all successive games with no further adaptation.

7.2 Interleaving EGTA and RL
We fully explored CDA↓4 by running our distributed testbed (al-

most continuously) for several months, sampling at least 100 games
per profile. The results of our experiments are summarized in Ta-
ble 3. Figure 3 shows the learning curves of strategies L9 to L14.
2Given 1 ≤ F ≤ 9 and one tiling, there are 29− 1 possible tiling
arrangements, and even more when considering multiple tilings or
all possible values of bi. The possibilities are infinite when consid-
ering all possible ways to split features into tiles.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

254

EGTA Learning

Strategies Equil. Mix Payoff Num. Strat. Dev.
Profiles Payoff

1. Kaplan
2. ZI
3. ZIbtq ZI 1.000 248.1 15 L1 268.7
4. L1 L1 1.000 242.5 35
5. ZIP ZIP 1.000 248.0 70
6. GD GD 1.000 248.6 126 L2 228.8

L3 225.0
L4 228.2
L5 233.0
L6 229.9
L7 237.0
L8 237.6
L9 251.8

7. L9 GD .531 246.1 210 L10 252.1L9 .469

8. L10 GD .191 248.0 330 L11 251.0L10 .809
9. L11 L11 1.000 246.2 495

10. GDX GDX .192 245.8 715 L12 248.3L11 .808

11. L12 L11 .049 245.8 1001 L13 245.9L12 .951

12. L13 L12 .872 245.6 1365 L14 245.6L13 .128

13. RB L12 .872 245.6 1820L13 .128

14. AA L12 .872 245.6 2380L13 .128

Table 3: Results obtained by interleaving EGTA with RL.

We first implemented Kaplan, ZI, and ZIbtq, and identified an
all-ZI Nash equilibrium. Our initial learned strategy, L1, produced
a positive deviation, and a new NE with all agents playing L1.
Then, we implemented stronger contenders, namely ZIP and GD,
and found a new NE with all agents playing GD. The following
attempts to deviate, from L2 to L8, were unsuccessful, until we
tried strategy L9 which did produce a positive deviation and a new
mixed-strategy NE with GD (.531) and L9 (.469). The next devi-
ation attempt, with strategy L10, was successful as well, and pro-
duced a new mixed-strategy NE with GD (.191) and L10 (.809).
Finally, L11 produced yet another deviation, and a pure-strategy
NE with all agents using L11.

We then tried an even stronger contender, GDX, which resulted
in a new equilibrium with GDX (.192) and L11 (.808). The next
two iterations produced deviations as well and new equilibria, first
L11 (.049) and L12 (.951), and then L12 (.872) and L13 (.128). The
next attempt to deviate with L14, however, failed, and equilibrium
remained the same. Lastly, we tried strategies RB and AA, which
did not change the equilibrium previously found. Our methodol-
ogy had converged into a new L12/L13 equilibrium, which did not
change with further learning, defeating all other strategies that we
tested. Further search for Nash equilibria via function minimization
revealed 16 mixtures with regret less than 0.01, all combinations of
L11 (0-11%), L12 (82-90%), and L13 (0-18%) only. Other RL en-
codings could possibly provide a better performance, but we leave
further exploration to follow-on investigations. It is interesting to
note the mostly decreasing margin of deviation achieved with every
iteration, from 20.6 points (L1), to 0.1 points (L13), and finally no
deviation (L14).

A desirable property of our methodology (or any other incremen-
tal discovery of strategies) is that new strategies provide a mono-
tonically decreasing regret (epsilon) with respect to the “true” equi-
librium (i.e., with respect to the entire strategy space). Of course,

1000 2000 3000 4000 5000 6000 7000

210

220

230

240

250

260

Non−dev (12 agents)
Dev L9 (4 agents)
Equil (16 agents)

1000 2000 3000 4000 5000 6000 7000

210

220

230

240

250

260

Non−dev (12 agents)
Dev L10 (4 agents)
Equil (16 agents)

1000 2000 3000 4000 5000 6000 7000
240

245

250

255
Non−dev (12 agents)
Dev L11 (4 agents)
Equil (16 agents)

1000 2000 3000 4000 5000 6000 7000
240

245

250

255
Non−dev (12 agents)
Dev L12 (4 agents)
Equil (16 agents)

1000 2000 3000 4000 5000 6000 7000
240

245

250

255
Non−dev (12 agents)
Dev L13 (4 agents)
Equil (16 agents)

1000 2000 3000 4000 5000 6000 7000
240

245

250

255
Non−dev (12 agents)
Dev L14 (4 agents)
Equil (16 agents)

Figure 3: Learning curves of L9-L14 (4 agents attempting to
deviate from equilibrium), payoffs of 12 non-deviating agents,
and equilibrium payoffs from Table 3. Strategies L9-L12 re-
sulted in a clear deviation, L13 deviated only slightly, and L14
was unable to deviate. All curves show moving averages with a
window of 500 games. Games beyond 7000 show final perfor-
mance without further adaptation.

2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

50

Number of strategies

ε

Figure 4: Deviations from each incremental equilibrium shown
in Table 3 to strategies 1-13.

we cannot provide any such guarantee, nor compute that regret (if
we knew the theoretical equilibrium, then our methodology would
not be needed). One thing we can do, as shown in Figure 4, is iden-
tify retroactively the best possible deviation to any strategy tested
from each incremental equilibrium. The mostly decreasing curve
is encouraging in the sense that incremental refinements of equilib-
rium seem to be moving regret in the right direction. Note that, by
definition, the last point of the curve will always be zero.

7.3 Analysis of L12 and L13
Throughout this research, we treat learned strategies as “black

boxes” encoded in large tile-coding databases and defined by their
underlying RL models. To better understand these strategies, we
use regression trees to characterize their behavior as a function of

L. Julian Schvartzman, Michael P. Wellman • Stronger CDA Strategies through Empirical Game-Theoretic Analysis and Reinforcement Learning

255

observable features. We say that an action A1 (as defined in Sec-
tion 6.1) requests more margin than another A2 if it seeks a larger
immediate profit (i.e., A1−A2 > 0).

Our trees fit the differences between the actions of any two strate-
gies (response variable) as a function of observed state features
(predictors). We run 1,000 games (16,000 when considering all
agents) with everyone playing the equilibrium strategy consisting
of L12 (.872) and L13 (.128). For each game, we save the state and
actions that GDX and L12 would take at every bidding opportunity,
a total of 1.3e+06 state-action observations per strategy.

Our predictors include all state features described in Section 6.1
(except H3 which co-varies with the action), along with the follow-
ing additional features:
H1b For buyers, H1b = p̄−vi; for sellers, H1b = vi− p̄.
H0

2 Binary feature equal to 1 in case H2 = 0, or 0 otherwise.
H∞

2 Binary feature equal to 1 in case H2 = ∞, or 0 otherwise.
Q3 BID-ASK spread.
Y1 Binary feature equal to 1 if no bids have been submitted to the

auction (by any agent), 0 otherwise.
Y2 Binary feature equal to 1 if no trades have yet occurred, 0

otherwise.

To compare any two strategies, we use the observations from
500 games to build the largest possible tree t that splits nodes until
they are either pure (all observations provide the same response),
contain identical predictor values, or contain less than 250 observa-
tions. We then use the observations from the remaining 500 games
to compute the cost3 of all subtrees in the optimal pruning sequence
for t, and prune t to the smallest tree that is within one standard er-
ror of the minimum-cost subtree.

The comparison between L12 and GDX (actions by L12 minus
actions by GDX) is shown in Figure 5. Half of the splits are based
on H1b (nodes 3, 7, 9, 11, 12, 13, 14, 15, 17, 23, 30, 36, 41),
showing that L12 requests relatively less margin for lower values
of H1b. Since a lower H1b is usually consistent with better prices,
these splits suggest that L12 tries to take advantage of good (price)
opportunities before GDX does. Consistently, splits on Q1 (nodes
2, 6, 20, 26, 27) and H1 (nodes 16, 22, 34) show that L12 requests
relatively less margin given better quote (lower Q1) and better trade
(lower H1) prices. The first split shows that L12 has a lower mar-
gin request when H2 = 0 (low probability of trading), and as time
passes (nodes 4, 5, 24). On average, L12 requests 5.2 fewer points
of margin than GDX.

Space considerations preclude other strategy comparisons here.
An extended version of this paper will include further comparisons.

8. DISCUSSION
We proposed a methodology for deriving bidding strategies, and

applied it to a widely known CDA game. The strategies that we
obtained supported a new mixed-strategy Nash equilibrium, sur-
passing in stability plausible versions of all other strategies pub-
lished to date. Our approach can be viewed as an attempt to auto-
mate the process of the prior literature in this domain (and others
as well), where a series of new strategy proposals (one per publi-
cation) is shown to improve over a selected set of prior candidates.
Although the result here also takes this form, we emphasize the
iterative process by which new ideas can subsequently be incor-
porated and improved upon. Previous efforts have also automated
strategy generation to some extent using genetic search methods
3The cost of a tree is defined as the probability weighted average
cost of all leaf nodes. The cost of a node is the mean squared error
of the observations in that node.

(8)
−4.7
16.9
6.9

(18)
−0.8
16.9
2.2

(19)
2.2
19.4
1.0

(21)
−3.6
15.4
2.8

(25)
−1.2
13.3
1.8

(28)
4.6
8.6
4.4

(29)
6.3
7.6
6.4

(31)
−9.2
17.4
11.6

(32)
−7.0
15.1
4.8

(33)
−2.1
10.4
0.7

(35)
−4.9
17.2
4.2

(37)
−8.5
19.4
3.3

(38)
−6.0
13.7
1.4

(39)
−3.6
11.8
1.3

(40)
−2.5
19.5
1.8

(42)
−1.0
10.4
1.6

(43)
1.2
11.3
1.8

(44)
1.5
8.9
1.8

(45)
3.5
10.0
2.5

(46)
−10.5
17.3
15.0

(47)
−9.5
16.5
8.2

(48)
−6.4
17.2
9.3

(49)
−4.6
17.9
1.5

(50)
−12.4
19.4
1.5

(51)
−9.8
15.3
0.8

(52)
−8.1
17.4
0.6

(53)
−4.8
14.4
0.7

(1)
−5.2
16.6
H2−0=1(2)

−7.4
17.2

Q1<111.19

(3)
−0.3
14.1

H1b<−15.32(4)
−8.7
17.0

T2<10.50

(5)
−4.6
17.3

T2<9.50

(6)
−6.3
17.3

Q1<111.16

(7)
3.9
9.3

H1b<−6.06

(9)
−9.4
16.9

H1b<35.75

(10)
0.2
17.8

V<110.50

(11)
−5.5
17.0

H1b<33.00

(12)
−8.2
17.4

H1b<−27.02

(13)
−3.1
16.6

H1b<−22.52

(14)
1.5
10.3

H1b<−10.45

(15)
5.6
8.0

H1b<−3.05

(16)
−9.8
17.2

H1<104.06

(17)
−6.3
14.7

H1b<65.29

(20)
−5.8
17.3

Q1<128.36

(22)
−9.8
18.9

H1<93.06

(23)
−4.8
12.9

H1b<−19.98

(24)
−4.1
18.2

T2<11.50

(26)
0.1
11.0

Q1<111.16

(27)
2.6
9.6

Q1<110.47

(30)
−10.2
17.1

H1b<15.36

(34)
−6.2
17.3

H1<115.32

(36)
−11.5
18.2

H1b<−38.56

(41)
−6.3
16.0

H1b<−30.59

Figure 5: Regression tree comparing strategies L12 and GDX.
Nodes display: (1) ID; (2) mean response difference; (3) stan-
dard deviation; (4) rule pointing to left child (choice nodes), or
percentage of observations covered (leaves).

[4, 17]. Our use of RL for this function can be viewed as just an
alternative optimization method, which we found effective for ex-
ploring a large non-parametric strategy space. Perhaps the more
crucial distinguishing feature of our work is the appeal to game-
theoretic reasoning to establish the context within which strategy
optimization takes place.

An important limitation of our approach is that, given a market
problem, it can be difficult to define a good RL model that actu-
ally works. Interesting games typically involve multiple agents in
partially observable, non-stationary, and high-dimensional environ-
ments, which makes the learning problem challenging. As docu-
mented in Table 3 (in particular row 6), our effort here entailed sig-
nificant trial-and-error. We provide no recipe for this issue beyond
relying on domain knowledge, creativity, and plenty of patience.
The RL models described here can serve as a good starting point,
especially for games involving double auctions.

Another challenge is the time required to sample a very large
payoff matrix, and search through a huge strategy space. Since
many critical tasks in our methodology can run in parallel, this
problem can be addressed reasonably well given sufficient time and
resources. Approximations and reductions also provide essential
help, while the iterative process of deviating from equilibrium fo-
cuses on limited but promising regions of the strategy space. Fur-
ther research on empirical game modeling and managing the search
process will enable yet more comprehensive strategic analysis of
rich multiagent scenarios.

9. REFERENCES
[1] K. Cai, J. Niu, and S. Parsons. Using evolutionary

game-theory to analyse the performance of trading strategies
in a continuous double auction market. In Adaptive Agents
and Multi-Agents Systems, volume 4865 of Lecture Notes in
Computer Science, pages 44–59. Springer-Verlag, 2007.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

256

[2] S.-F. Cheng, E. Leung, K. M. Lochner, K. O’Malley, D. M.
Reeves, L. J. Schvartzman, and M. P. Wellman. Walverine: a
Walrasian trading agent. Decision Support Systems,
39(2):169–184, 2005.

[3] D. Cliff. Minimal-intelligence agents for bargaining
behaviours in market-based environments. Technical Report
HP-97-91, HP Laboratories, 1997.

[4] D. Cliff. ZIP60: Further explorations in the evolutionary
design of online auction market mechanisms. Technical
Report HPL-2005-85, HP Laboratories, 2005.

[5] J. D. Farmer, P. Patelli, and I. I. Zovko. The predictive power
of zero intelligence in financial markets. Proceedings of the
National Academy of Sciences, 102:2254–2259, 2005.

[6] D. Friedman and J. Rust, editors. The Double Auction
Market: Institutions, Theories, and Evidence.
Addison-Wesley, 1993.

[7] C. Fritschi and K. Dorer. Agent-oriented software
engineering for successful TAC participation. In First
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 45–46, Bologna, Italy, 2002.

[8] S. Gjerstad and J. Dickhaut. Price formation in double
auctions. Games and Economic Behavior, 22(1):1–29, 1998.

[9] D. K. Gode and S. Sunder. Allocative efficiency of markets
with zero intelligence traders: Market as a partial substitute
for individual rationality. Journal of Political Economy,
101(1):119–137, 1993.

[10] M. He, H. fung Leung, and N. R. Jennings. A fuzzy logic
based bidding strategy for autonomous agents in continuous
double auctions. IEEE Transactions on Knowledge and Data
Engineering, 15(6):1345–1363, 2003.

[11] P. R. Jordan, C. Kiekintveld, and M. P. Wellman. Empirical
game-theoretic analysis of the TAC supply chain game. In
Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1188–1195, 2007.

[12] M. Kearns and L. Ortiz. The Penn-Lehman automated
trading project. IEEE Intelligent Systems, 18(6):22–31, 2003.

[13] C. Keating and W. Shadwick. Omega: Functions and
Metrics. Gilmour Drummond Publishing, 2005.

[14] B. LeBaron. Agent-based computational finance. In
L. Tesfatsion and K. L. Judd, editors, Handbook of
Computational Economics: Agent-Based Computational
Economics, volume 2. North-Holland, 2006.

[15] K. M. Lochner and M. P. Wellman. Rule-based specification
of auction mechanisms. In Third International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 818–825, New York, 2004.

[16] S. Park, E. H. Durfee, and W. P. Birmingham. Use of Markov
chains to design an agent bidding strategy for continuous
double auctions. Journal of Artificial Intelligence Research,
22:175–214, 2004.

[17] S. Phelps, M. Marcinkiewicz, S. Parsons, and P. McBurney.
A novel method for automatic strategy acquisition in
n-player non-zero-sum games. In Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 705–712, Hakodate, 2006.

[18] C. Preist. Commodity trading using an agent-based iterated
double auction. In Third International Conference on
Autonomous Agents, pages 131–138, 1999.

[19] R. Radner. Collusive behavior in noncooperative
epsilon-equilibria of oligopolies with long but finite lives.
Journal of Economic Theory, 22(2):136–154, 1980.

[20] D. M. Reeves. Generating Trading Agent Strategies:
Analytic and Empirical Methods for Infinite and Large
Games. PhD thesis, University of Michigan, 2005.

[21] S. M. Ross. Simulation. Academic Press, third edition, 2001.
[22] J. Rust, J. H. Miller, and R. G. Palmer. Behavior of trading

automata in a computerized double auction market. In
Friedman and Rust [6], pages 155–198.

[23] A. Sherstov and P. Stone. Three automated stock-trading
agents: A comparative study. In AAMAS-04 Workshop on
Agent-Mediated Electronic Commerce, pages 173–187,
2004.

[24] P. Stone, M. L. Littman, S. Singh, and M. Kearns.
ATTac-2000: An adaptive autonomous bidding agent.
Journal of Artificial Intelligence Research, 15:189–206,
2001.

[25] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[26] P. D. Taylor and L. B. Jonker. Evolutionary stable strategies
and game dynamics. Mathematical Biosciences, 40:145–156,
1978.

[27] G. Tesauro and J. L. Bredin. Strategic sequential bidding in
auctions using dynamic programming. In First International
Joint Conference on Autonomous Agents and Multiagent
Systems, pages 591–598, 2002.

[28] G. Tesauro and R. Das. High-performance bidding agents for
the continuous double auction. In Third ACM Conference on
Electronic Commerce, pages 206–209, 2001.

[29] I. A. Vetsikas and B. Selman. A principled study of the
design tradeoffs for autonomous trading agents. In Second
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 473–480, 2003.

[30] P. Vytelingum, D. Cliff, and N. R. Jennings. Evolutionary
stability of behavioural types in the continuous double
auction. In AAMAS-06 Workshop on Trading Agent Design
and Analysis and Agent Mediated Electronic Commerce,
2006.

[31] P. Vytelingum, D. Cliff, and N. R. Jennings. Strategic
bidding in continuous double auctions. Artificial Intelligence,
172:1700–1729, 2008.

[32] P. Vytelingum, R. K. Dash, E. David, and N. R. Jennings. A
risk-based bidding strategy for continuous double auctions.
In Sixteenth European Conference on Artificial Intelligence,
pages 79–83, Valencia, Spain, 2004.

[33] W. E. Walsh, R. Das, G. Tesauro, and J. O. Kephart.
Analyzing complex strategic interactions in multi-agent
systems. In AAAI-02 Workshop on Game-Theoretic and
Decision-Theoretic Agents, 2002.

[34] M. P. Wellman, A. Greenwald, and P. Stone. Autonomous
Bidding Agents: Strategies and Lessons from the Trading
Agent Competition. MIT Press, 2007.

[35] M. P. Wellman, A. Osepayshvili, J. K. MacKie-Mason, and
D. M. Reeves. Bidding strategies for simultaneous ascending
auctions. B. E. Journal of Theoretical Economics (Topics),
8(1), 2008.

[36] M. P. Wellman, D. M. Reeves, K. M. Lochner, S.-F. Cheng,
and R. Suri. Approximate strategic reasoning through
hierarchical reduction of large symmetric games. In
Twentieth National Conference on Artificial Intelligence,
pages 502–508, Pittsburgh, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

